Voice Mode Enhancement - 10 Phase Implementation
Status: ✅ COMPLETE (2025-12-03) All 10 phases implemented with full backend-frontend integration
This document describes the comprehensive 10-phase enhancement to VoiceAssist's voice mode, transforming it from a functional voice assistant into a human-like conversational partner with medical dictation capabilities.
Executive Summary
Primary Goals Achieved:
- ✅ Natural, human-like voice interactions
- ✅ Contextual memory across conversations
- ✅ Professional medical dictation
- ✅ Natural backchanneling
- ✅ Session analytics and feedback collection
Key External Services:
- Hume AI - Emotion detection from audio (HIPAA BAA available)
- Deepgram Nova-3 Medical - Upgraded STT for medical vocabulary
- ElevenLabs - TTS with backchanneling support
Phase Implementation Status
| Phase | Name | Status | Backend Service | Frontend Handler |
|---|---|---|---|---|
| 1 | Emotional Intelligence | ✅ | emotion_detection_service.py | emotion.detected |
| 2 | Backchanneling System | ✅ | backchannel_service.py | backchannel.trigger |
| 3 | Prosody Analysis | ✅ | prosody_analysis_service.py | Integrated |
| 4 | Memory & Context | ✅ | memory_context_service.py | memory.context_loaded |
| 5 | Advanced Turn-Taking | ✅ | Integrated in pipeline | turn.state |
| 6 | Variable Response Timing | ✅ | Integrated in pipeline | Timing controls |
| 7 | Conversational Repair | ✅ | repair_strategy_service.py | Repair flows |
| 8 | Medical Dictation Core | ✅ | dictation_service.py, voice_command_service.py, note_formatter_service.py, medical_vocabulary_service.py | dictation.* |
| 9 | Patient Context Integration | ✅ | patient_context_service.py, dictation_phi_monitor.py | patient.*, phi.* |
| 10 | Frontend Integration & Analytics | ✅ | session_analytics_service.py, feedback_service.py | analytics.*, feedback.* |
Architecture Overview
┌─────────────────────────────────────────────────────────────────────────────┐
│ ENHANCED VOICE PIPELINE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ User Audio ──┬──> Deepgram Nova-3 ──> Transcript ──┐ │
│ │ (Medical STT) │ │
│ │ │ │
│ ├──> Hume AI ──────────> Emotion ──────┼──> Context Builder │
│ │ (Emotion) │ │
│ │ │ │
│ └──> Prosody Analyzer ──> Urgency ─────┘ │
│ (from Deepgram) │
│ │
│ Context Builder ──┬──> Short-term (Redis) ─────────┐ │
│ ├──> Medium-term (PostgreSQL) ───┼──> Memory Service │
│ └──> Long-term (Qdrant vectors) ─┘ │
│ │
│ Memory + Emotion + Transcript ──> Thinker (GPT-4o) ──> Response │
│ │
│ Response ──> Turn Manager ──> TTS (ElevenLabs) ──> User │
│ │ │
│ └──> Backchannel Service (parallel audio) │
│ │
│ Session Analytics ──> Metrics + Latency Tracking ──> Feedback Prompts │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
Phase 1: Emotional Intelligence
Goal: Detect user emotions from speech and adapt responses accordingly.
Backend Service
Location: services/api-gateway/app/services/emotion_detection_service.py
class EmotionDetectionService: """ Wraps Hume AI Expression Measurement API. - Analyzes audio chunks (500ms) in parallel with STT - Returns: valence, arousal, discrete emotions - Caches recent emotion states for trending """ async def analyze_audio_chunk(self, audio: bytes) -> EmotionResult async def get_emotion_trend(self, session_id: str) -> EmotionTrend def map_emotion_to_response_style(self, emotion: str) -> VoiceStyle
WebSocket Message
{ type: "emotion.detected", data: { emotion: string, confidence: number, valence: number, arousal: number } }
Frontend Handler
In useThinkerTalkerSession.ts:
onEmotionDetected?: (event: TTEmotionDetectedEvent) => void;
Latency Impact: +50-100ms (parallel, non-blocking)
Phase 2: Backchanneling System
Goal: Natural verbal acknowledgments during user speech.
Backend Service
Location: services/api-gateway/app/services/backchannel_service.py
class BackchannelService: """ Generates and manages backchanneling audio. - Pre-caches common phrases per voice - Triggers based on VAD pause detection """ PHRASES = { "en": ["uh-huh", "mm-hmm", "I see", "right", "got it"], "ar": ["اها", "نعم", "صح"] } async def get_backchannel_audio(self, phrase: str, voice_id: str) -> bytes def should_trigger(self, session_state: SessionState) -> bool
Timing Logic
- Trigger after 2-3 seconds of continuous user speech
- Only during natural pauses (150-300ms silence)
- Minimum 5 seconds between backchannels
- Never interrupt mid-sentence
WebSocket Message
{ type: "backchannel.trigger", data: { phrase: string, audio_base64: string } }
Latency Impact: ~0ms (pre-cached audio)
Phase 3: Prosody Analysis
Goal: Analyze speech patterns for better intent understanding.
Backend Service
Location: services/api-gateway/app/services/prosody_analysis_service.py
@dataclass class ProsodyAnalysis: speech_rate_wpm: float # Words per minute pitch_variance: float # Emotion indicator loudness: float # Urgency indicator pause_patterns: List[float] # Hesitation detection urgency_score: float # Derived 0-1 score confidence_score: float # Speaker certainty
Integration
- Parses Deepgram's prosody/topics metadata
- Matches response speech rate to user's rate
- Detects uncertainty from pitch patterns
Latency Impact: +0ms (data from Deepgram)
Phase 4: Memory & Context System
Goal: Conversation memory across turns and sessions.
Backend Service
Location: services/api-gateway/app/services/memory_context_service.py
class MemoryContextService: """Three-tier memory management.""" async def store_turn_context(self, user_id, session_id, turn) -> None # Redis: last 10 turns, TTL = session duration async def get_recent_context(self, user_id, session_id, turns=5) -> list # Retrieve from Redis async def summarize_session(self, session_id) -> SessionContext # LLM-generated summary at session end async def store_long_term_memory(self, user_id, memory) -> str # Store in PostgreSQL + Qdrant vector async def retrieve_relevant_memories(self, user_id, query, top_k=5) -> list # Semantic search over Qdrant async def build_context_window(self, user_id, session_id, query) -> str # Assemble optimized context for LLM (max 4K tokens)
WebSocket Message
{ type: "memory.context_loaded", data: { memories: Memory[], relevance_scores: number[] } }
Phase 5 & 6: Turn-Taking and Response Timing
Goal: Fluid conversation flow with natural turn transitions and human-like timing.
Turn States
class TurnTakingState(Enum): USER_TURN = "user_turn" TRANSITION = "transition" # Brief transition window AI_TURN = "ai_turn" OVERLAP = "overlap" # Both speaking (barge-in)
Response Timing Configuration
RESPONSE_TIMING = { "urgent": {"delay_ms": 0, "use_filler": False}, # Medical emergency "simple": {"delay_ms": 200, "use_filler": False}, # Yes/no, confirmations "complex": {"delay_ms": 600, "use_filler": True}, # Multi-part questions "clarification": {"delay_ms": 0, "use_filler": False} }
WebSocket Message
{ type: "turn.state", data: { state: "user_turn" | "transition" | "ai_turn" } }
Phase 7: Conversational Repair
Goal: Graceful handling of misunderstandings.
Backend Service
Location: services/api-gateway/app/services/repair_strategy_service.py
class RepairStrategy(Enum): ECHO_CHECK = "echo_check" # "So you're asking about X?" CLARIFY_SPECIFIC = "clarify_specific" # "Did you mean X or Y?" REQUEST_REPHRASE = "request_rephrase" # "Could you say that differently?" PARTIAL_ANSWER = "partial_answer" # "I'm not sure, but..."
Features
- Confidence scoring for responses
- Clarifying questions when confidence < 0.7
- Natural upward inflection for questions (SSML)
- Frustration detection from repeated corrections
Phase 8: Medical Dictation Core
Goal: Hands-free clinical documentation.
Backend Services
Location: services/api-gateway/app/services/
dictation_service.py
class DictationState(Enum): IDLE = "idle" LISTENING = "listening" PROCESSING = "processing" PAUSED = "paused" REVIEWING = "reviewing" class NoteType(Enum): SOAP = "soap" # Subjective, Objective, Assessment, Plan HP = "h_and_p" # History and Physical PROGRESS = "progress" # Progress Note PROCEDURE = "procedure" CUSTOM = "custom"
voice_command_service.py
# Navigation "go to subjective", "move to objective", "next section", "previous section" # Formatting "new paragraph", "bullet point", "number one/two/three" # Editing "delete that", "scratch that", "read that back", "undo" # Clinical "check interactions", "what's the dosing for", "show labs", "show medications" # Control "start dictation", "pause", "stop dictation", "save note"
note_formatter_service.py
- LLM-assisted note formatting
- Grammar correction preserving medical terminology
- Auto-punctuation and abbreviation handling
medical_vocabulary_service.py
- Specialty-specific keyword sets
- User-customizable vocabulary
- Medical abbreviation expansion
WebSocket Messages
{ type: "dictation.state", data: { state: DictationState, note_type: NoteType } } { type: "dictation.section_update", data: { section: string, content: string } } { type: "dictation.section_change", data: { previous: string, current: string } } { type: "dictation.command", data: { command: string, executed: boolean } }
Phase 9: Patient Context Integration
Goal: Context-aware clinical assistance with HIPAA compliance.
Backend Services
patient_context_service.py
class PatientContextService: async def get_context_for_dictation(self, user_id, patient_id) -> DictationContext def generate_context_prompts(self, context) -> List[str] # "I see 3 recent lab results. Would you like me to summarize them?"
dictation_phi_monitor.py
- Real-time PHI detection during dictation
- Alert if unexpected PHI spoken outside patient context
HIPAA Audit Events
# Added to audit_service.py DICTATION_STARTED = "dictation_started" PATIENT_CONTEXT_ACCESSED = "patient_context_accessed" NOTE_SAVED = "note_saved" PHI_DETECTED = "phi_detected"
WebSocket Messages
{ type: "patient.context_loaded", data: { patientId: string, context: PatientContext } } { type: "phi.alert", data: { severity: string, message: string, detected_phi: string[] } }
Phase 10: Frontend Integration & Analytics
Goal: Session analytics, feedback collection, and full frontend integration.
Backend Services
session_analytics_service.py
Location: services/api-gateway/app/services/session_analytics_service.py
class SessionAnalyticsService: """ Comprehensive voice session analytics tracking. Tracks: - Latency metrics (STT, LLM, TTS, E2E) with percentiles - Interaction counts (utterances, responses, tool calls, barge-ins) - Quality metrics (confidence scores, turn-taking, repairs) - Dictation-specific metrics """ def create_session(self, session_id: str, user_id: Optional[str], mode: str, on_analytics_update: Optional[Callable]) -> SessionAnalytics def record_latency(self, session_id: str, latency_type: str, latency_ms: float) -> None def record_interaction(self, session_id: str, interaction_type: InteractionType, word_count: int, duration_ms: float) -> None def record_emotion(self, session_id: str, emotion: str, valence: float, arousal: float) -> None def record_barge_in(self, session_id: str) -> None def record_repair(self, session_id: str) -> None def record_error(self, session_id: str, error_type: str, message: str) -> None def end_session(self, session_id: str) -> Optional[Dict[str, Any]]
feedback_service.py
Location: services/api-gateway/app/services/feedback_service.py
class FeedbackService: """ User feedback collection for voice sessions. Features: - Quick thumbs up/down during session - Detailed session ratings with categories - Bug reports and suggestions - Feedback prompts based on session context """ def record_quick_feedback(self, session_id: str, user_id: Optional[str] = None, thumbs_up: bool = True, message_id: Optional[str] = None) -> FeedbackItem def record_session_rating(self, session_id: str, user_id: Optional[str] = None, rating: int = 5, categories: Optional[Dict[str, int]] = None, comment: Optional[str] = None) -> List[FeedbackItem] def get_feedback_prompts(self, session_id: str, session_duration_ms: float = 0, interaction_count: int = 0, has_errors: bool = False) -> List[FeedbackPrompt] def generate_analytics_report(self, session_ids: Optional[List[str]] = None) -> Dict[str, Any]
Analytics Data Structure
interface TTSessionAnalytics { sessionId: string; userId: string | null; phase: string; mode: string; timing: { startedAt: string; endedAt: string | null; durationMs: number; }; latency: { stt: { count: number; total: number; min: number; max: number; p50: number; p95: number; p99: number }; llm: { count: number; total: number; min: number; max: number; p50: number; p95: number; p99: number }; tts: { count: number; total: number; min: number; max: number; p50: number; p95: number; p99: number }; e2e: { count: number; total: number; min: number; max: number; p50: number; p95: number; p99: number }; }; interactions: { counts: Record<string, number>; words: { user: number; assistant: number }; speakingTimeMs: { user: number; assistant: number }; }; quality: { sttConfidence: { count: number; total: number; min: number; max: number }; aiConfidence: { count: number; total: number; min: number; max: number }; emotion: { dominant: string | null; valence: number; arousal: number }; turnTaking: { bargeIns: number; overlaps: number; smoothTransitions: number }; repairs: number; }; dictation: { sectionsEdited: string[]; commandsExecuted: number; wordsTranscribed: number; } | null; errors: { count: number; details: Array<{ timestamp: string; type: string; message: string }>; }; }
WebSocket Messages
// Analytics { type: "analytics.update", data: TTSessionAnalytics } { type: "analytics.session_ended", data: TTSessionAnalytics } // Feedback { type: "feedback.prompts", data: { prompts: TTFeedbackPrompt[] } } { type: "feedback.recorded", data: { thumbsUp: boolean, messageId: string | null } }
Frontend Handlers
In useThinkerTalkerSession.ts:
// Phase 10 callbacks onAnalyticsUpdate?: (analytics: TTSessionAnalytics) => void; onSessionEnded?: (analytics: TTSessionAnalytics) => void; onFeedbackPrompts?: (event: TTFeedbackPromptsEvent) => void; onFeedbackRecorded?: (event: TTFeedbackRecordedEvent) => void;
Complete WebSocket Protocol
All Message Types
| Phase | Message Type | Direction | Description |
|---|---|---|---|
| 1 | emotion.detected | Server → Client | User emotion detected |
| 2 | backchannel.trigger | Server → Client | Play backchannel audio |
| 4 | memory.context_loaded | Server → Client | Relevant memories loaded |
| 5 | turn.state | Server → Client | Turn state changed |
| 8 | dictation.state | Server → Client | Dictation state changed |
| 8 | dictation.section_update | Server → Client | Section content updated |
| 8 | dictation.section_change | Server → Client | Current section changed |
| 8 | dictation.command | Server → Client | Voice command executed |
| 9 | patient.context_loaded | Server → Client | Patient context loaded |
| 9 | phi.alert | Server → Client | PHI detected alert |
| 10 | analytics.update | Server → Client | Session analytics update |
| 10 | analytics.session_ended | Server → Client | Final session analytics |
| 10 | feedback.prompts | Server → Client | Feedback prompts |
| 10 | feedback.recorded | Server → Client | Feedback recorded confirmation |
Integration Points
Voice Pipeline Service
Location: services/api-gateway/app/services/voice_pipeline_service.py
The voice pipeline service orchestrates all 10 phases:
class VoicePipelineService: # Phase 1-9 services _emotion_detector: EmotionDetectionService _backchannel_service: BackchannelService _prosody_analyzer: ProsodyAnalysisService _memory_service: MemoryContextService _repair_service: RepairStrategyService _dictation_service: DictationService _voice_command_service: VoiceCommandService _note_formatter: NoteFormatterService _medical_vocabulary: MedicalVocabularyService _patient_context_service: PatientContextService _phi_monitor: DictationPHIMonitor # Phase 10 services _analytics: SessionAnalytics _analytics_service: SessionAnalyticsService _feedback_service: FeedbackService async def start(self): # Initialize analytics session self._analytics = self._analytics_service.create_session( session_id=self.session_id, user_id=self.user_id, mode="dictation" if self.config.mode == PipelineMode.DICTATION else "conversation", on_analytics_update=self._send_analytics_update, ) async def stop(self): # Send feedback prompts prompts = self._feedback_service.get_feedback_prompts(...) await self._on_message(PipelineMessage(type="feedback.prompts", ...)) # Finalize analytics final_analytics = self._analytics_service.end_session(self.session_id) await self._on_message(PipelineMessage(type="analytics.session_ended", ...))
Frontend Hook
Location: apps/web-app/src/hooks/useThinkerTalkerSession.ts
All 10 phases integrated with callbacks:
export interface UseThinkerTalkerSessionOptions { // ... existing options ... // Phase 1: Emotion onEmotionDetected?: (event: TTEmotionDetectedEvent) => void; // Phase 2: Backchanneling onBackchannelTrigger?: (event: TTBackchannelTriggerEvent) => void; // Phase 4: Memory onMemoryContextLoaded?: (event: TTMemoryContextLoadedEvent) => void; // Phase 5: Turn-taking onTurnStateChange?: (event: TTTurnStateChangeEvent) => void; // Phase 8: Dictation onDictationStateChange?: (event: TTDictationStateChangeEvent) => void; onDictationSectionUpdate?: (event: TTDictationSectionUpdateEvent) => void; onDictationSectionChange?: (event: TTDictationSectionChangeEvent) => void; onDictationCommand?: (event: TTDictationCommandEvent) => void; // Phase 9: Patient Context onPatientContextLoaded?: (event: TTPatientContextLoadedEvent) => void; onPHIAlert?: (event: TTPHIAlertEvent) => void; // Phase 10: Analytics & Feedback onAnalyticsUpdate?: (analytics: TTSessionAnalytics) => void; onSessionEnded?: (analytics: TTSessionAnalytics) => void; onFeedbackPrompts?: (event: TTFeedbackPromptsEvent) => void; onFeedbackRecorded?: (event: TTFeedbackRecordedEvent) => void; }
File Reference
Backend Services (New)
| File | Phase | Purpose |
|---|---|---|
emotion_detection_service.py | 1 | Hume AI emotion detection |
backchannel_service.py | 2 | Natural acknowledgments |
prosody_analysis_service.py | 3 | Speech pattern analysis |
memory_context_service.py | 4 | Three-tier memory system |
repair_strategy_service.py | 7 | Conversational repair |
dictation_service.py | 8 | Medical dictation state |
voice_command_service.py | 8 | Voice command processing |
note_formatter_service.py | 8 | Note formatting |
medical_vocabulary_service.py | 8 | Medical terminology |
patient_context_service.py | 9 | Patient context |
dictation_phi_monitor.py | 9 | PHI monitoring |
session_analytics_service.py | 10 | Session analytics |
feedback_service.py | 10 | User feedback |
Backend Services (Modified)
| File | Changes |
|---|---|
voice_pipeline_service.py | Orchestrates all 10 phases, analytics integration |
thinker_service.py | Emotion context, repair strategies |
talker_service.py | Variable timing, backchanneling |
streaming_stt_service.py | Nova-3 Medical, prosody features |
audit_service.py | Dictation audit events |
Frontend
| File | Purpose |
|---|---|
useThinkerTalkerSession.ts | All message type handlers |
Success Metrics
| Metric | Target | Measurement |
|---|---|---|
| Response latency | <200ms | P95 from analytics |
| Emotion detection accuracy | >80% | Manual validation |
| User satisfaction | >4.2/5 | Feedback ratings |
| Dictation word accuracy | >95% WER | Medical vocabulary tests |
| Memory retrieval relevance | >0.7 | Cosine similarity |
| Turn-taking smoothness | <5% interruption rate | Session analytics |
Related Documentation
- VOICE_MODE_PIPELINE.md - Core pipeline architecture
- VOICE_MODE_SETTINGS_GUIDE.md - User settings
- VOICE_STATE_2025-11-29.md - Voice state snapshot
Last updated: 2025-12-03 All 10 phases implemented and integrated